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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
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(A)Cave painting at 
Chauvet, France, 
about 30,000 B.C.;

(B)Aerial photograph of 
the picture of a 
monkey as part of 
the Nazca Lines 
geoglyphs, Peru, 
about 700 – 200 B.C.; 

(C)Shen Zhou (1427-
1509 A.D.): Poet on a 
mountain top, ink on 
paper, China; 

(D)Line drawing by 7-
year old I. Lleras
(2010 A.D.). 
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We know edges are special from human 
(mammalian) vision studies

Hubel & Wiesel, 1960s
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We know edges are special from human 
(mammalian) vision studies
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Edge detection
• Goal:  Identify sudden changes 

(discontinuities) in an image
– Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges

– More compact than pixels

• Ideal: artist’s line drawing (but artist 
is also using object-level knowledge)

Source: D. Lowe
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Why do we care about edges?

• Extract information, recognize objects

• Recover geometry and viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infin ity)

Source: J. Hayes
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Origins of edges

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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Surface normal discontinuity

Closeup of edges



Edges

Stanford University

09-O
ct-2018

14

Depth discontinuity

Closeup of edges
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Closeup of edges

Surface color discontinuity
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform
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Derivatives in 1D
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Derivatives in 1D - example
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Derivatives in 1D - example
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Discrete Derivative in 1D
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Types of Discrete derivative in 1D

Backward

Forward

Central
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1D discrete derivate filters

• Backward filter:                       [0      1      -1]

• Forward:                                   [-1      1      0]

• Central:                                     [ 1      0     -1]
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1D discrete derivate filters

• Backward filter:                       [0      1      -1]
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1D discrete derivate filters

• Backward filter:                       [0      1      -1]

• Forward:                                   [-1      1      0]
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1D discrete derivate example
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Discrete derivate in 2D
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Discrete derivate in 2D
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Discrete derivate in 2D
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2D discrete derivative filters

What does this filter do?
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2D discrete derivative filters

What about this filter?
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2D discrete derivative - example
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2D discrete derivative - example

What happens when we apply 
this filter?
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2D discrete derivative - example

What happens when we apply this filter?
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2D discrete derivative - example

Now let’s try the other filter!



Edges

Stanford University

09-O
ct-2018

35

2D discrete derivative - example

What happens when we apply this filter?

0 10 10
0 10 10

0 0
0 0

0 10 10
0
0

10
10

10
10

0 0
0
0

0
0
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3x3 image gradient filters
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform
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Characterizing edges

• An edge is a place of rapid change in the image intensity 
function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient

• The gradient of an image: 

• how does this relate to the direction of the edge?

Source: Steve Seitz

The gradient direction is given by

The edge strength is given by the gradient magnitude
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Finite differences: example

• Which one is the gradient in the x-direction? How about y-direction?

Original
Image

Gradient 
magnitude

x-direction y-direction
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Intensity profile
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Effects of noise
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Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge? Source: S. Seitz
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Effects of noise

Source: D. Forsyth

• Finite difference filters respond strongly to 
noise
– Image noise results in pixels that look very 

different from their neighbors
– Generally, the larger the noise the stronger the 

response
• What is to be done?

– Smoothing the image should help, by forcing 
pixels different to their neighbors (=noise pixels?) 
to look more like neighbors
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Effects of noise

• Finite difference filters respond strongly to noise
– Image noise results in pixels that look very different from their 

neighbors
– Generally, the larger the noise the stronger the response

• What is to be done?
– Smoothing the image should help, by forcing pixels different to their 

neighbors (=noise pixels?) to look more like neighbors

Source: D. Forsyth
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Smoothing with different filters

• Mean smoothing

• Gaussian  (smoothing * derivative)

Slide credit: Steve Seitz
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Smoothing with different filters

Slide credit: Steve Seitz
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Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

*

f

g

f * g

)( gf
dx
d

*

Source: S. Seitz
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Derivative theorem of convolution
• This theorem gives us a very useful property:

• This saves us one operation:

g
dx
d

fgf
dx
d

*=* )(

g
dx
d

f *

f

g
dx
d

Source: S. Seitz
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Derivative of Gaussian filter

2D-gaussian

*       [1    0   -1] = 

x - derivative
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Derivative of Gaussian filter

x-direction y-direction
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Derivative of Gaussian filter
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Tradeoff between smoothing at different scales

• Smoothed derivative removes noise, but blurs edge. Also 
finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Source: D. Forsyth
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Designing an edge detector

• Criteria for an “optimal” edge detector:
– Good detection: the optimal detector must minimize the probability of 

false positives (detecting spurious edges caused by noise), as well as that 
of false negatives (missing real edges)
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Designing an edge detector
• Criteria for an “optimal” edge detector:
– Good detection: the optimal detector must minimize the probability of 

false positives (detecting spurious edges caused by noise), as well as that 
of false negatives (missing real edges)

– Good localization: the edges detected must be as close as possible to the 
true edges
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Designing an edge detector

• Criteria for an “optimal” edge detector:
– Good detection: the optimal detector must minimize the probability of 

false positives (detecting spurious edges caused by noise), as well as that 
of false negatives (missing real edges)

– Good localization: the edges detected must be as close as possible to the 
true edges

– Single response: the detector must return one point only for each true 
edge point; that is, minimize the number of local maxima around the true 
edge
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough transform
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Sobel Operator

• uses two 3×3 kernels which are convolved with the original image to 
calculate approximations of the derivatives

• one for horizontal changes, and one for vertical
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Sobel Operation

• Smoothing + differentiation

Gaussian smoothing differentiation
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Sobel Operation

• Magnitude:

• Angle or direction of the gradient:
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Sobel Filter example
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Sobel Filter Problems

• Poor Localization (Trigger response in multiple adjacent pixels)
• Thresholding value favors certain directions over others
–Can miss oblique edges more than horizontal or vertical edges
–False negatives
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform
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Canny edge detector

• This is probably the most widely used edge detector in 

computer vision

• Theoretical model: step-edges corrupted by additive 

Gaussian noise

• Canny has shown that the first derivative of the Gaussian 

closely approximates the operator that optimizes the 

product of signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 

Analysis and Machine Intelligence, 8:679-714, 1986. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4
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Canny edge detector

• Suppress Noise
• Compute gradient magnitude and direction 
• Apply Non-Maximum Suppression
– Assures minimal response

• Use hysteresis and connectivity analysis to detect edges
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Example

• original image
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Derivative of Gaussian filter

x-direction y-direction
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: J. Hayes
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Get orientation at each pixel

Source: J. Hayes
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Canny edge detector

• Suppress Noise
• Compute gradient magnitude and direction 
• Apply Non-Maximum Suppression
– Assures minimal response
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Non-maximum suppression

• Edge occurs where gradient reaches a maxima
• Suppress non-maxima gradient even if it passes threshold
• Only eight angle directions possible 
– Suppress all pixels in each direction which are not maxima
– Do this in each marked pixel neighborhood
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Remove spurious gradients

is the gradient at pixel (x, y)!" #, %

!" #, % !" #, % > !" #′, %′
!" #, % > !" #′′, %′′
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Non-maximum suppression

• Edge occurs where gradient reaches a maxima
• Suppress non-maxima gradient even if it passes threshold
• Only eight angle directions possible 
– Suppress all pixels in each direction which are not maxima
– Do this in each marked pixel neighborhood
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Non-maximum suppression
At q, we have a 
maximum if the 
value is larger than 
those at both p 
and at r. 
Interpolate to get 
these values.

Source: D. Forsyth
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Non-max Suppression

Before                         After
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Canny edge detector

• Suppress Noise
• Compute gradient magnitude and direction 
• Apply Non-Maximum Suppression
– Assures minimal response

• Use hysteresis and connectivity analysis to detect edges
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Hysteresis thresholding

• Avoid streaking near threshold value 
• Define two thresholds: Low and High
– If less than Low, not an edge
– If greater than High, strong edge
– If between Low and High, weak edge 



Edges

Stanford University

09-O
ct-2018

80

Hysteresis thresholding

If the gradient at a pixel is
• above High, declare it as an ‘strong edge pixel’
• below Low, declare it as a “non-edge-pixel”
• between Low and High
– Consider its neighbors iteratively then declare it an “edge pixel” if it is connected to an 

‘strong edge pixel’ directly or via pixels between Low and High
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Hysteresis thresholding

Source: S. Seitz

strong edge pixel weak but connected 
edge pixels

strong edge pixel
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Final Canny Edges
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
– Thin multi-pixel wide �ridges� down to single pixel width

4. Thresholding and linking (hysteresis):
– Define two thresholds: low and high
– Use the high threshold to start edge curves and the low threshold to 

continue them
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Effect of s (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of s depends on desired behavior
• large s detects large scale edges
• small s detects fine features

Source: S. Seitz
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Gradients
(e.g. Canny)

Color

Texture

Combined

Human
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45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform
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Intro to Hough transform

• The Hough transform (HT) can be used to detect lines.
• It was introduced in 1962 (Hough 1962) and first used to find lines in images a 

decade later (Duda 1972). 
• The goal is to find the location of lines in images. 
• Caveat: Hough transform can detect lines, circles and other structures ONLY if 

their parametric equation is known. 
• It can give robust detection under noise and partial occlusion
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Prior to Hough transform

• Assume that we have performed some edge detection, and a thresholding 
of the edge magnitude image. 

• Thus, we have some pixels that may partially describe the boundary of 
some objects.



Edges

Stanford University

09-O
ct-2018

90

Detecting lines using Hough transform

• We wish to find sets of pixels that make up straight lines. 
• Consider a point of known coordinates (xi;yi)
– There are many lines passing through the point (xi ,yi ). 

• Straight lines that pass that point have the form yi= a*xi + b
– Common to them is that they satisfy the equation for some set of parameters 

(a, b)
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Detecting lines using Hough transform

• This equation can obviously be rewritten as follows: 

– b = -a*xi + yi

– We can now consider x and y as parameters

– a and b as variables. 

• This is a line in (a, b) space parameterized by x and y. 
– So: a single point in x1,y1-space gives a line in (a,b) space. 

– Another point (x2, y2 ) will give rise to another line (a,b) space.
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Detecting lines using Hough transform
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Detecting lines using Hough transform
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Detecting lines using Hough transform

• Two points (x1, y1) and(x2 y2) define a line in the (x, y) plane.
• These two points give rise to two different lines in (a,b) space. 

• In (a,b) space these lines will intersect in a point (a’ b’) 
• All points on the line defined by (x1, y1) and (x2 , y2) in (x, y) space will 

parameterize lines that intersect in (a’, b’) in (a,b) space.
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Algorithm for Hough transform

• Quantize the parameter space (a b) by dividing it into cells 

• This quantized space is often referred to as the accumulator cells. 

• Count the number of times a line intersects a given cell. 

– For each pair of points (x1, y1) and (x2, y2) detected as an edge, find the intersection (a’,b’)  

in (a, b)space.

– Increase the value of a cell in the range 

[[amin, amax],[bmin,bmax]] that (a’, b’) belongs to.

– Cells receiving more than a certain number of counts (also called ‘votes’) are assumed to 

correspond to lines in (x,y) space.
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Output of Hough transform

• Here are the top 20 most voted lines in the image:
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Other Hough transformations

• We can represent lines as polar coordinates instead of y = a*x + b

• Polar coordinate representation:
– x*cosθ + y*sinθ = ρ

• Can you figure out the relationship between 
– (x y) and (ρ θ)?
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Other Hough transformations

• Note that lines in (x y) space are not lines in
(ρ θ) space, unlike (a b) space.

• A horizontal line will have θ=0 and ρ equal 
to the intercept with the y-axis.

• A vertial line will have θ=90 and ρ equal to 
the intercept with the x-axis.
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Example video

• https://youtu.be/4zHbI-fFIlI?t=3m35s

https://youtu.be/4zHbI-fFIlI?t=3m35s
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Concluding remarks

• Advantages:
– Conceptually simple.
– Easy implementation 
– Handles missing and occluded data very gracefully.
– Can be adapted to many types of forms, not just lines

• Disadvantages:
– Computationally complex for objects with many parameters. 
– Looks for only one single type of object 
– Can be “fooled” by “apparent lines”. 
– The length and the position of a line segment cannot be determined. 
– Co-linear line segments cannot be separated.
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What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform


