Lecture: Edge Detection

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab
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What we will learn today

Edge detection
Image Gradients

A simple edge detector
Sobel edge detector
Canny edge detector

Hough Transform
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Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
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(A)Cave painting at
Chauvet, France,
about 30,000 B.C.;

(B)Aerial photograph of
the picture of a
monkey as part of
the Nazca Lines
geoglyphs, Peru, 3
about 700 — 200 B.C.; |

(C)Shen Zhou (1427-
1509 A.D.): Poet on a

mountain top, ink on
paper, China;

(D)Line drawing by 7-
year old I. Lleras
(2010 A.D.).
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A Experimental setup B Stimulus Stimulus
orientation  presented

}

Light bar stimulus
projected on screen

Recording from visual cortex

Record
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We know edges are special from human
(mammalian) vision studies
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Hubel & Wiesel, 1960s
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Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011
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Edge detection

Goal: Identify sudden changes
(discontinuities) in an image
— Intuitively, most semantic and shape

information from the image can be
encoded in the edges

— More compact than pixels

e |deal: artist’s line drawing (but artist
is also using object-level knowledge)

Source: D. Lowe
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Why do we care about edges?

» Extract information, recognize objects

e Recover geometry and viewpoint

2 point
= (at infinity)
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Vanishing
point

Source: J. Hayes



Origins of edges

surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity
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Closeup of edges

Surface normal discontinuity
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Closeup of edges

Depth discontinuity
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Closeup of edges

Surface color discontinuity
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What we will learn today

* Image Gradients
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Derivatives in 1D

izlimm_)() f(X)—f(X—AX)

dx Ax

=f' () =/,




Derivatives in 1D - example
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Derivatives in 1D - example

—X

= = 2x+4x° d—yZCOSX-I-(—l)e—x
dx dx
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Discrete Derivative in 1D

af J(x)— f(x—Ax)

o lim,, x = /(%)
Cdil: f(x)—f(x—l) :fr(x)

X 1
df

P JX)=fx=1)=f(x)
X




Types of Discrete derivative in 1D

Backward %: f(x)—f(x=1)= f'(x)

Forward i = f(x)=f(x+])=f"(x)

dx

Central Z’l: f(x+D)=f(x=1)= f'(x)
X




1D discrete derivate filters

* Backward filter: 0O 1 -1]
f)-f(x=1D=f"(x)

* Forward: -1 1 O]
f) - f(x+D)=f'(x)

* Central: [1 O -1]
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Sx+D)—-f(x-1)=f"(x)




1D discrete derivate filters

* Backward filter: 0O 1 -1]
fxX)=f(x=1)=f"(x)
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1D discrete derivate filters

* Backward filter: 0O 1 -1]

fx)=f(x=1)=f"(x)
* Forward: -1 1 O]

S - f(x+1)=f'(x)
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1D discrete derivate example

f(x)=10 15 10 10 25 20 20 20
ffxX)=0 5 —50 15-5 0 0




Discrete derivate in 2D

Given function f(x, y)
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Discrete derivate in 2D

Given function f(x,y)
ACS)
i Ox fx
Gradient vector Vi(x,y)= o (x.y) |~ 1
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Discrete derivate in 2D

Given function f ( X, y)
Of (x,)) ;
Gradient vector Vf (x,y)= 8f (8;, y) _ |:fr}

Gradient magnitude ]Vf(x,y)| = \/f_r2 -i-f)f2

49 — tan_l (g];/g£>
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Gradient direction




2D discrete derivative filters

What does this filter do?

. 0
3l 0
_— O —
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2D discrete derivative filters

What about this filter?

1'— 0 1 1 1 1
—l=1 0 1 1 0 0 O
3 | 3

-1 0 1 -1 -1 -1
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2D discrete derivative - example

10 10 20 20 20
10 10 20 20 20

10 10 20 20 20
10 10 20 20 20




2D discrete derivative - example

What happens when we apply

) ) P
10 10 20 20 20 this filter-

10 10 20 20 20
[=|10 10 20 20 20
10 10 20 20 20
10 10 20 20 20




2D discrete derivative - example

What happens when we apply this filter?

10 10 20 20 20
10 10 20 20 20

I=[10 10 20 20 20 0 0 0 0 O
10 10 20 20 20
10 10 20 20 20/ 0 0 0 0 O
]y =10 0 O O O 2
00000
0 0 0 0 0




2D discrete derivative - example

Now let’s try the other filter!

10 10 20 20 20
10 10 20 20 20
[=|10 10 20 20 20
10 10 20 20 20
10 10 20 20 20




2D discrete derivative - example

What happens when we apply this filter?

10 10 20 20 20]
10 10 20 20 20
I={10 10 20 20 20
10 10 20 20 20
10 10 20 20 20|
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3x3 image gradient filters

0 1 111
<=1 01 {0 0 o0
0 1 -1 -1 -1

Dervative in x direction Derivative in y direction
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What we will learn today

* Asimple edge detector
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Characterizing edges

e An edge is a place of rapid change in the image intensity
function

intensity function
image (along horizontal scanline) first derivative
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edges correspond to
extrema of derivative




Image gradient

* The gradient of an image:

SN

The gradient vector points in the direction of most rapid increase in intensity

The gradient direction is given by § = tan—! (g_i/g_g;)

e how does this relate to the direction of the edge?
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The edge strength is given by the gradient magnitude

2
1V£1 = /(G5)° + (3)

Source: Steve Seitz



Original Gradient
Image magnitude
x-direction y-direction
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* Which one Is the gradient in the x-direction? How about y-direction?
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Effects of noise
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Effects of noise

e Consider a single row or column of the image

— Plotting intensity as a function of position gives a signal

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f ()

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz
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Effects of noise

e Finite difference filters respond strongly to
noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What is to be done?
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Source: D. Forsyth



Effects of noise

e Finite difference filters respond strongly to noise
— Image noise results in pixels that look very different from their
neighbors
— Generally, the larger the noise the stronger the response

e What is to be done?

— Smoothing the image should help, by forcing pixels different to their
neighbors (=noise pixels?) to look more like neighbors

o
O
|
®)
(@]
0
N
o
=
09)

Source: D. Forsyth



Smoothing with different filters

* Mean smoothing 1]

e Gaussian (smoothing * derivative)
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Slide credit: Steve Seitz



Smoothing with different filters

Mccan Gaussian Meedian
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Solution: smooth first

Sigma =50

~
Signal
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 To find edges, look for peaks in di(f*g)
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Source: S. Seitz




Derivative theorem of convolution

e This theorem gives us a very useful property:
d d
—(f*g)=f*—g
dx dx

e This saves us one operation:

Sigma = 50
T

.................................................

~
Signal

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Derivative of Gaussian filter
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Derivative of Gaussian filter

x-direction y-direction
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Derivative of Gaussian filter
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Tradeoff between smoothing at different scales

1 pixel 3 pixels [ pixels
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* Smoothed derivative removes noise, but blurs edge. Also
finds edges at different “scales”.

Source: D. Forsyth



Desighing an edge detector

e Criteria for an “optimal” edge detector:

— Good detection: the optimal detector must minimize the probability of
false positives (detecting spurious edges caused by noise), as well as that
of false negatives (missing real edges)
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Desighing an edge detector

IH

e Criteria for an “optimal” edge detector:

— Good detection: the optimal detector must minimize the probability of
false positives (detecting spurious edges caused by noise), as well as that
of false negatives (missing real edges)

— Good localization: the edges detected must be as close as possible to the
true edges
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Desighing an edge detector

I”

e Criteria for an “optimal” edge detector:

— Good detection: the optimal detector must minimize the probability of
false positives (detecting spurious edges caused by noise), as well as that
of false negatives (missing real edges)

— Good localization: the edges detected must be as close as possible to the
true edges

— Single response: the detector must return one point only for each true
edge point; that is, minimize the number of local maxima around the true

edge

@
[] [] [] OO 2
[] [] [] 11 5
] ] ] [ e
] i HB
N [] i HER
True Poor robustness Poor Too many

edge to noise localization responses




What we will learn today

* Sobel Edge detector

o
O
|
o
(@]
o
N
o
=
09)




Sobel Operator

* uses two 3x3 kernels which are convolved with the original image to
calculate approximations of the derivatives

* one for horizontal changes, and one for vertical

+1 0 —17 (+1 42 417
+2 0 —2 G,=]0 0 0
+1 0 -1 -1 -2 -1
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Sobel Operation

* Smoothing + differentiation

4+1 0 —17 1
G,=|42 0 -2 [+1 0 —1]

+1 0 —1_]_1_ k

Gaussian smoothing differentiation
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Sobel Operation

* Magnitude:

G=,/G,>+G,’
* Angle or direction of the grauien:

® — at Gy
‘“n(cx)
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Sobel Filter example
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Sobel Filter Problems

B B .
N

step edge ramp edge roof edge

* Poor Localization (Trigger response in multiple adjacent pixels)
* Thresholding value favors certain directions over others

—Can miss obligue edges more than horizontal or vertical edges
— False negatives
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What we will learn today

e Canny edge detector

o
O
|
o
(@]
o
N
o
=
09)




Canny edge detector

e This is probably the most widely used edge detector in
computer vision

e Theoretical model: step-edges corrupted by additive
Gaussian noise

e Canny has shown that the first derivative of the Gaussian
closely approximates the operator that optimizes the
product of signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Canny edge detector

* Suppress Noise
* Compute gradient magnitude and direction

* Apply Non-Maximum Suppression
— Assures minimal response

Use hysteresis and connectivity analysis to detect edges
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Example
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Derivative of Gaussian filter
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Compute gradients (DoG)
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X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: J. Hayes




Get orientation at each pixel

f =tan~1 (2{//2@
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Source: J. Hayes




Compute gradients (DoG)
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Gradient Magnitude




Canny edge detector

* Suppress Noise
* Compute gradient magnitude and direction

* Apply Non-Maximum Suppression
— Assures minimal response
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Non-maximum suppression

* Edge occurs where gradient reaches a maxima
e Suppress non-maxima gradient even if it passes threshold
* Only eight angle directions possible

— Suppress all pixels in each direction which are not maxima
— Do this in each marked pixel neighborhood
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Remove spurious gradients

|VG|(x,y) is the gradient at pixel (x, y)

(VG| (x,y)if |VG|(x,y) > |VG|(x',y")

'{y M(x,y):< &|\7G|(x,y) > |VG|(XH,y”)

(x, Y ) 0 otherwise
\(x",y")

x'and x" are the neighbors of x along
normal direction to an edge
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Alper Yilmaz, Mubarak Shah Fall 2012, UCF




Non-maximum suppression

* Edge occurs where gradient reaches a maxima
e Suppress non-maxima gradient even if it passes threshold
* Only eight angle directions possible

— Suppress all pixels in each direction which are not maxima
— Do this in each marked pixel neighborhood
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Non-maximum suppression
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At g, we have a
maximum if the
value is larger than
those at both p
and atr.
Interpolate to get
these values.

Source: D. Forsyth
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Non-max Suppression
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Canny edge detector

* Suppress Noise
* Compute gradient magnitude and direction

* Apply Non-Maximum Suppression
— Assures minimal response

Use hysteresis and connectivity analysis to detect edges
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Hysteresis thresholding

* Avoid streaking near threshold value
* Define two thresholds: Low and High

— If less than Low, not an edge
— If greater than High, strong edge
— If between Low and High, weak edge
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Hysteresis thresholding

If the gradient at a pixel is
* above High, declare it as an ‘strong edge pixel’

|”

* below Low, declare it as a “non-edge-pixe

* between Low and High

— Consider its neighbors iteratively then declare it an “edge pixel” if it is connected to an
‘strong edge pixel’ directly or via pixels between Low and High
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Hysteresis thresholding

weak but connected
edge pixels

strong edge pixel

strong edge pixel
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Final Canny Edges



Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
— Define two thresholds: low and high

— Use the high threshold to start edge curves and the low threshold to
continue them
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Effect of o (Gaussian kernel spread/size)

b |
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The choice of o depends on desired behavior

e |arge o detects large scale edges

e small o detects fine features
Source: S. Seitz
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45 years of boundary detection

Precision

09

08

07

06

05

04

03

02

0.1

I

| I A |
| I A |

® [F=0.79] Human
= = = [F=070]gPb
= = = [F =(0.68] Multiscale — Ren (2008)
= = = [F = 0.66] BEL - Dollar, Tu, Belongie (2006)

= = = [F =(0.66] Mairal, Leordeanu, Bach, Herbert, Ponce (2008)

= = = [F =0.65] Min Cover - Felzenszwalb, McAllester (2006)
= m m[F =(.65] Pb - Martin, Fowlkes, Malik (2004)
= = = [F = 0.64] Untangling Cycles — Zhu, Song, Shi (2007)
[F = 0.64] CRF - Ren, Fowlkes, Malik (2005)
= [F = 0.58] Canny (1986)
= [F = 0.56] Perona, Malik (1990)
= [F = 0.50] Hildreth, Marr (1980)
= [F = 0.48] Prewitt (1970)
[F =0.48] Sobel (1968)
[F = 0.47] Roberts (1965)
1 1 1 1 I 1

0.1 0.2 03 04 05 06
Recall

0.7

08 09 1

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
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What we will learn today

* Hough Transform
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Intro to Hough transform

* The Hough transform (HT) can be used to detect lines.

It was introduced in 1962 (Hough 1962) and first used to find lines in images a
decade later (Duda 1972).

The goal is to find the location of lines in images.

Caveat: Hough transform can detect lines, circles and other structures ONLY if
their parametric equation is known.

* |t can give robust detection under noise and partial occlusion
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Prior to Hough transform

* Assume that we have performed some edge detection, and a thresholding
of the edge magnitude image.

* Thus, we have some pixels that may partially describe the boundary of
some objects.
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Detecting lines using Hough transform

* We wish to find sets of pixels that make up straight lines.
e Consider a point of known coordinates (x;;y;)
— There are many lines passing through the point (xi,yi ).

 Straight lines that pass that point have the formy;=a*x; + b

— Common to them is that they satisfy the equation for some set of parameters
(a, b)
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Detecting lines using Hough transform

* This equation can obviously be rewritten as follows:
— b =-a*xi+yi
— We can now consider x and y as parameters
— a and b as variables.
* Thisisalinein (a, b) space parameterized by x and y.
— So: a single point in x1,y1-space gives a line in (a,b) space.
— Another point (x2, y2 ) will give rise to another line (a,b) space.
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Detecting lines using Hough transform

One point in (x,y) gives a line
in the (a,b)-plane

(x,y)-space
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Detecting lines using Hough transform
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Detecting lines using Hough transform

Two points (x1, y1) and(x2 y2) define a line in the (x, y) plane.
* These two points give rise to two different lines in (a,b) space.

* In (a,b) space these lines will intersect in a point (a’ b’)

 All points on the line defined by (x1, y1) and (x2, y2) in (x, y) space will
parameterize lines that intersect in (a’, b’) in (a,b) space.
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Algorithm for Hough transform

e Quantize the parameter space (a b) by dividing it into cells
* This quantized space is often referred to as the accumulator cells.

e Count the number of times a line intersects a given cell.

— For each pair of points (x1, y1) and (xz2, y2) detected as an edge, find the intersection (a’,b’)
in (a, b)space.

— Increase the value of a cell in the range
[[amin, @amax],[bmin,bmax]] that (a’, b’) belongs to.

— Cells receiving more than a certain number of counts (also called ‘votes’) are assumed to
correspond to lines in (x,y) space.
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Output of Hough transform

* Here are the top 20 most voted lines in the image:
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Other Hough transformations

* We can represent lines as polar coordinates instead of y =a*x+ b

* Polar coordinate representation:
— x*cosB + y*sinB =p

* Can you figure out the relationship between
—(xy)and (p 6)?
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Other Hough transformations

* Note that lines in (x y) space are not lines in
(p ©) space, unlike (a b) space.

* A horizontal line will have =0 and p equal
to the intercept with the y-axis.

e Avertial line will have =90 and p equal to
the intercept with the x-axis.
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. > 0

x;cost) +y;sinfl = p '

v;cost) + y;sinf) = p
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Example video
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https://youtu.be/4zHbI-fFIlI?t=3m35s

Concluding remarks

* Advantages:
— Conceptually simple.
— Easy implementation
— Handles missing and occluded data very gracefully.
— Can be adapted to many types of forms, not just lines
e Disadvantages:
— Computationally complex for objects with many parameters.
— Looks for only one single type of object

— Can be “fooled” by “apparent lines”.
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— The length and the position of a line segment cannot be determined.
— Co-linear line segments cannot be separated.




What we will learn today

Edge detection
Image Gradients

A simple edge detector
Sobel Edge detector
Canny edge detector

Hough Transform
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