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Lecture: Tracking

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab
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What we will learn today?

Feature Tracking

Simple KLT tracker

2D transformations
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Iterative KLT tracker
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Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf




What we will learn today?

* Feature Tracking
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Problem statement

Image sequence
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Slide credit: Yonsei Univ.




Problem statement

Feature point detection
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Slide credit: Yonsei Univ.




Problem statement

Feature point tracking
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Single object tracking
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Multiple object tracking
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Tracking 29-Nov-2018

Tracking with a fixed camera



Tracking with a moving camera
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Tracking with multiple cameras
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Challenges in Feature tracking

* Figure out which features can be tracked
— Efficiently track across frames

e Some points may change appearance over time
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— e.g., due to rotation, moving into shadows, etc.

Drift: small errors can accumulate as appearance model is updated

Points may appear or disappear.
— need to be able to add/delete tracked points.
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What are good features to track?

* |ntuitively, we want to avoid smooth regions and edges. But is there a more is
principled way to define good features?
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 What kinds of image regions can we detect easily and consistently? Think about
what you learnt earlier in the class.
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What are good features to track?

* Can measure “quality” of features from just a single image.
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* Hence: tracking Harris corners (or equivalent) guarantees small error
sensitivity!
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Source: Silvio Savarese




Motion estimation techniques

e Optical flow

— Recover image motion at each pixel from spatio-temporal image brightness
variations (optical flow)
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* Feature-tracking

— Extract visual features (corners, textured areas) and “track” them over
multiple frames
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Optical flow can help track features

Once we have the features we
want to track, lucas-kanade or
other optical flow algorithsm can
help track those features
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Feature-tracking
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Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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What we will learn today?

e Simple KLT tracker
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Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf




Simple KLT tracker

1. Find a good point to track (harris corner)

2. For each Harris corner compute motion (translation or affine) between
consecutive frames.

3. Link motion vectors in successive frames to get a track for each Harris point
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Introduce new Harris points by applying Harris detector at every m (10 or 15)
frames

5. Track new and old Harris points using steps 1-3
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@ Tracking 29-Nov-2018

Video credit: Kanade

KLT tracker for fish



Tracking cars
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Video credit: Kanade



Tracking movement
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What we will learn today?

e 2D transformations
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Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf




Types of 2D transformations

translation

_—Y

Euuhdean

similar in

atﬁne
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Translation

e Let the initial feature be located by (x, y).
D}W = (xy’) * In the next frame, it has translated to (X, y’).

* We can write the transformation as: g’_'
(xy) x = x + by a

y =y + b,
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Translation

X = x + b

D}W=(x’,y’) y, y + bZ

(xy) * We can write this as a matrix
transformation using homogeneous
coordinates:

1= 8 2y

Bupjoe. |

N
o
=z
o)

T

N
o
=
co




Translation

. [X’] _ [1 0 bl] ;C]
D}Wﬂx’,y’) y' 0 1 by[

(x,y)
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Notation:

X
. v _[1 0 by
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Displacement Model for Translation

X
1 0 b
« W(x;p) = 1 y]
S| el

-

(x,y) There are only two parameters: g
- [}
b,

The derivative of the transformation w.r.t. p: .

ow 1 0 :

%(x' p) _ [0 1 o

This is called the Jacobian.




Similarity motion

Rigid motion includes scaling + translation.

We can write the transformations as:

W(xp) = |

p=la b

2 m) = |

X
0 b1] y
a b, 1
b,]"

x 1 O
y 0 1

X
y

)

)

ax + b
ay + b,

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)




Affine motion

Affine motion includes scaling + rotation + translation.

X = ax + a,y + by

y = aszx + a,y + b,

X
‘) — 41 A2 b,
W (x; p) [a3 a, bJ [31/]
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*p=la; a, by a3 a, bl

ow,. _[xy 1 .0 0 0
ap(x’p)_[OOOxyl
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What we will learn today?
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e |terative KLT tracker

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf




Problem setting

* Given a video sequence, find all the features and track them across the video.
* First, use Harris corner detection to find features and their location x.

* For each feature at location x = [x y]':
— Choose a descriptor create an initial template for that feature: T (x).
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KLT objective

* Our aim is to find the p that minimizes the difference between the
template T'(x) and the description of the new location of x after
undergoing the transformation.

D W (xp) - TP

X
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* For all the features x in the image I,

— I(W (x; p)) is the estimate of where the features move to in the next frame after
the transformation defined by W (x; p). Recall that p is our vector of parameters.
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— Sum is over an image patch around x.




KLT objective

* Since p may be large, minimizing this function may be difficult:

D> W (xp) = TP

X
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* We will instead break downp = p, + Ap
— Large + small/residual motion
— Where p, is going to be fixed and we will solve for Ap, which is a small value.

— We can initialize po with our best guess of what the motion is and initialize Ap as
Zero.
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A little bit of math: Taylor series

e Taylor series is defined as:

flx+ Ax) = f(x) +Axa£+Ax26—f+...

x 0x?
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e Assuming that Ax is small.
* We can apply this expansion to the KLT tracker and only use the first two terms:
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Expanded KLT objective

D W (i po+2p) = TP

X —
ow 2 3
~ z [I(W(x; Po)) + Vlgﬂp — T(x) 2

X

It’s a good thing we have already calculated what %—IZ would look like for affine,

translations and other transformations!
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Expanded KLT objective

* So our aim is to find the Ap that minimizes the following:

_ ow
argAI;nnZ: [I (W (x;pp)) + VI— op Ap — T(x)]

* Where VI = [I, 1]
* Differentiate wrt Ap and setting it to zero:

72 (1w e + 71 o
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pAp T(x)]—O
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Solving for Ap

* Solving for Ap in:

S [o g_ff 10w o) + 712

pAp T(x)]—O
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* we get:

w1
Ap = H! Z 15| 117G - 1w Geipo]

where H = zx[w ][\71
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Interpreting the H matrix for translation transformations

n= Y [ [rr %
B op op
X

Recall that
1. VI=|I, Iy] and

| on W oy 1O
2. for translation motion, g(x' p) = [0 1

H=Z[[1x L[ 2]] [[Ix L) ‘1’]
’ 1.2 LI

Therefore,

_ \;‘ N y That’s the Harris corner
Y. 1 [ 2 detector we learnt in
= Hxly  ly
class!!!
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Interpreting the H matrix for affine transformations
2 1, xID oyl xII, ylI,
S N Y

xI; oyl I, xI; Y1, xyl1, yIlI,
vII,  yI; o I, YT xlr o Y
xI 1, xI f x*1 1 .ol f x*1 f xyl f
vl I, yI; xyld, yI} I, YL
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Can you derive this yourself similarly to how we derived
the translation transformation?




: . owy
Overall KLT tracker algorithm — ap =41} |71 | [~ 1 G po))

X

Given the features from Harris detector:

op
Compute Inverse Hessian H ™1

Calculate the change in parameters Ap
10. Update parameters po = po + Ap
11. Repeat 2 to 10 until Ap is small.

1. Initialize pyand Ap .

2. Compute the initial templates T'(x) for each feature. .
3. Transform the features in the image I with W (x; p,). of
4. Measure the error: (W (x; py)) — T(x). @
5. Compute the image gradients VI = [I, I,].

6. Evaluate the Jacobian %—Z

7. Compute steepest descent V] —W

8.

9.
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KLT over multiple frames

* Once you find a transformation for two frames, you will repeat this process for
every couple of frames.

* Run Harris detector every 15-20 frames to find new features.

Bupjoe. |

N
o
=z
o)

T

N
o
=
co




Challenges to consider

* Implementation issues

* Window size
— Small window more sensitive to noise and may miss larger motions (without pyramid)
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— Large window more likely to cross an occlusion boundary (and it’s slower)
— 15x15 to 31x31 seems typical

* Weighting the window
— Common to apply weights so that center matters more (e.g., with Gaussian)
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What we learnt today?

Feature Tracking

Simple KLT tracker

2D transformations
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Iterative KLT tracker
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Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf




