Bupjoe. |

Lecture: Tracking

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab

N
Nt
2
(@)

i

N
o
-
(%)

What we will learn today?

Feature Tracking

Simple KLT tracker

2D transformations

Bupjoe. |

Iterative KLT tracker

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

What we will learn today?

* Feature Tracking

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Problem statement

Image sequence

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)

Slide credit: Yonsei Univ.

Problem statement

Feature point detection

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)

Slide credit: Yonsei Univ.

Problem statement

Feature point tracking

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)

Slide credit: Yonsei Univ.

Single object tracking

N
o
=z
o

T

N
o
=
co

Multiple object tracking

—
=
Q
@)
=
>
«Q

Tracking 29-Nov-2018

Tracking with a fixed camera

Tracking with a moving camera

_|
-
Q
0
=,
-
«Q

Tracking with multiple cameras

' Ny g‘—) i 4 Q " -;- SapbETyRE ~/tw Webcam :" ST
=
[Do
T C Tt ey

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Challenges in Feature tracking

* Figure out which features can be tracked
— Efficiently track across frames

e Some points may change appearance over time

Bupjoe. |

— e.g., due to rotation, moving into shadows, etc.

Drift: small errors can accumulate as appearance model is updated

Points may appear or disappear.
— need to be able to add/delete tracked points.

N
Nt
2
(@]

i

N
o
-
(%)

What are good features to track?

* |ntuitively, we want to avoid smooth regions and edges. But is there a more is
principled way to define good features?

Bupjoe. |

 What kinds of image regions can we detect easily and consistently? Think about
what you learnt earlier in the class.

N
o
=z
o)

T

N
o
=
co

What are good features to track?

* Can measure “quality” of features from just a single image.

Bupjoe. |

* Hence: tracking Harris corners (or equivalent) guarantees small error
sensitivity!

N
Nt
2
(@]

i

N
o
-
(%)

Source: Silvio Savarese

Motion estimation techniques

e Optical flow

— Recover image motion at each pixel from spatio-temporal image brightness
variations (optical flow)

Bupjoe. |

* Feature-tracking

— Extract visual features (corners, textured areas) and “track” them over
multiple frames

N
o
=z
o)

T

N
o
=
co

Optical flow can help track features

Once we have the features we
want to track, lucas-kanade or
other optical flow algorithsm can
help track those features

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Feature-tracking

Bupjoe. |

N
o
=z
o

T

N
o
=
co

Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology

A.M—lnﬂw Tracking 29-Nov-2018

>

ao

o

)

C

<

o]

T

G

o

)

+—

S

=

+—

(o]0 2

£

- ©

0 == m

=

k a.o ald

@ o

{o o

(O T S

— =

c

— 18 k)

A=

| >

.%wx _

Q .

S i o

l >

> 3

iF=] o

) o n

g

g | la =

e o o o o ! S
o« o —

9]

LL i 5

G

o

>

(%]

1]

£

S

o)

o

What we will learn today?

e Simple KLT tracker

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Simple KLT tracker

1. Find a good point to track (harris corner)

2. For each Harris corner compute motion (translation or affine) between
consecutive frames.

3. Link motion vectors in successive frames to get a track for each Harris point

Bupjoe. |

Introduce new Harris points by applying Harris detector at every m (10 or 15)
frames

5. Track new and old Harris points using steps 1-3

N
o
=z
o)

T

N
o
=
co

@ Tracking 29-Nov-2018

Video credit: Kanade

KLT tracker for fish

Tracking cars

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Video credit: Kanade

Tracking movement

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Video credit: Kanade

What we will learn today?

e 2D transformations

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Types of 2D transformations

translation

_—Y

Euuhdean

similar in

atﬁne

pr 0Jecm e

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)

Translation

e Let the initial feature be located by (x, y).
D}W = (xy’) * In the next frame, it has translated to (X, y’).

* We can write the transformation as: g’_'
(xy) x = x + by a

y =y + b,

N
o
=z
o)

T

N
o
=
co

Translation

X = x + b

D}W=(x’,y’) y, y + bZ

(xy) * We can write this as a matrix
transformation using homogeneous
coordinates:

1= 8 2y

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Translation

. [X’] _ [1 0 bl] ;C]
D}Wﬂx’,y’) y' 0 1 by[

(x,y)

Bupjoe. |

Notation:

X
. v _[1 0 by

N
o
=z
o)

T

N
o
=
co

Displacement Model for Translation

X
1 0 b
« W(x;p) = 1 y]
S| el

-

(x,y) There are only two parameters: g
- [}
b,

The derivative of the transformation w.r.t. p: .

ow 1 0 :

%(x' p) _ [0 1 o

This is called the Jacobian.

Similarity motion

Rigid motion includes scaling + translation.

We can write the transformations as:

W(xp) = |

p=la b

2 m) = |

X
0 b1] y
a b, 1
b,]"

x 1 O
y 0 1

X
y

)

)

ax + b
ay + b,

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)

Affine motion

Affine motion includes scaling + rotation + translation.

X = ax + a,y + by

y = aszx + a,y + b,

X
‘) — 41 A2 b,
W (x; p) [a3 a, bJ [31/]

Bupjoe. |

*p=la; a, by a3 a, bl

ow,. _[xy 1 .0 0 0
ap(x’p)_[OOOxyl

N
o
=z
o)

T

N
o
=
co

What we will learn today?

Bupjoe. |

e |terative KLT tracker

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Problem setting

* Given a video sequence, find all the features and track them across the video.
* First, use Harris corner detection to find features and their location x.

* For each feature at location x = [x y]':
— Choose a descriptor create an initial template for that feature: T (x).

Bupjoe. |

N
Nt
2
(@]

i

N
o
-
(%)

KLT objective

* Our aim is to find the p that minimizes the difference between the
template T'(x) and the description of the new location of x after
undergoing the transformation.

D W (xp) - TP

X

Bupjoe. |

* For all the features x in the image I,

— I(W (x; p)) is the estimate of where the features move to in the next frame after
the transformation defined by W (x; p). Recall that p is our vector of parameters.

N
Nt
2
(@]

i

N
o
-
(%)

— Sum is over an image patch around x.

KLT objective

* Since p may be large, minimizing this function may be difficult:

D> W (xp) = TP

X

Bupjoe. |

* We will instead break downp = p, + Ap
— Large + small/residual motion
— Where p, is going to be fixed and we will solve for Ap, which is a small value.

— We can initialize po with our best guess of what the motion is and initialize Ap as
Zero.

N
o
=z
o)

T

N
o
=
co

A little bit of math: Taylor series

e Taylor series is defined as:

flx+ Ax) = f(x) +Axa£+Ax26—f+...

x 0x?

Bupjoe. |

e Assuming that Ax is small.
* We can apply this expansion to the KLT tracker and only use the first two terms:

N
Nt
2
(@]

i

N
o
-
(%)

Expanded KLT objective

D W (i po+2p) = TP

X —
ow 2 3
~ z [I(W(x; Po)) + Vlgﬂp — T(x) 2

X

It’s a good thing we have already calculated what %—IZ would look like for affine,

translations and other transformations!

N
o
=z
o)

T

N
o
=
co

Expanded KLT objective

* So our aim is to find the Ap that minimizes the following:

_ ow
argAI;nnZ: [I (W (x;pp)) + VI— op Ap — T(x)]

* Where VI = [I, 1]
* Differentiate wrt Ap and setting it to zero:

72 (1w e + 71 o

Bupjoe. |

pAp T(x)]—O

N
o
=z
o)

T

N
o
=
co

Solving for Ap

* Solving for Ap in:

S [o g_ff 10w o) + 712

pAp T(x)]—O

Bupjoe. |

* we get:

w1
Ap = H! Z 15| 117G - 1w Geipo]

where H = zx[w][\71

N
Nt
2
(@]

i

N
o
-
(%)

Interpreting the H matrix for translation transformations

n= Y [[rr %
B op op
X

Recall that
1. VI=|I, Iy] and

| on W oy 1O
2. for translation motion, g(x' p) = [0 1

H=Z[[1x L[2]] [[Ix L) ‘1’]
’ 1.2 LI

Therefore,

_ \;‘ N y That’s the Harris corner
Y. 1 [2 detector we learnt in
= Hxly ly
class!!!

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Interpreting the H matrix for affine transformations
2 1, xID oyl xII, ylI,
S N Y

xI; oyl I, xI; Y1, xyl1, yIlI,
vII, yI; o I, YT xlr o Y
xI 1, xI f x*1 1 .ol f x*1 f xyl f
vl I, yI; xyld, yI} I, YL

Bupjoe. |

"
¢

N
o
=z
o)

T

N
o
=
co

Can you derive this yourself similarly to how we derived
the translation transformation?

: . owy
Overall KLT tracker algorithm — ap =41} |71 | [~ 1 G po))

X

Given the features from Harris detector:

op
Compute Inverse Hessian H ™1

Calculate the change in parameters Ap
10. Update parameters po = po + Ap
11. Repeat 2 to 10 until Ap is small.

1. Initialize pyand Ap .

2. Compute the initial templates T'(x) for each feature. .
3. Transform the features in the image I with W (x; p,). of
4. Measure the error: (W (x; py)) — T(x). @
5. Compute the image gradients VI = [I, I,].

6. Evaluate the Jacobian %—Z

7. Compute steepest descent V] —W

8.

9.

N
Nt
2
(@]

i

N
o
-
(%)

KLT over multiple frames

* Once you find a transformation for two frames, you will repeat this process for
every couple of frames.

* Run Harris detector every 15-20 frames to find new features.

Bupjoe. |

N
o
=z
o)

T

N
o
=
co

Challenges to consider

* Implementation issues

* Window size
— Small window more sensitive to noise and may miss larger motions (without pyramid)

Bupjoe. |

— Large window more likely to cross an occlusion boundary (and it’s slower)
— 15x15 to 31x31 seems typical

* Weighting the window
— Common to apply weights so that center matters more (e.g., with Gaussian)

N
Nt
2
(@]

i

N
o
-
(%)

What we learnt today?

Feature Tracking

Simple KLT tracker

2D transformations

Bupjoe. |

Iterative KLT tracker

N
o
=z
o)

T

N
o
=
co

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

