Lecture: Tracking

Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

What we will learn today?

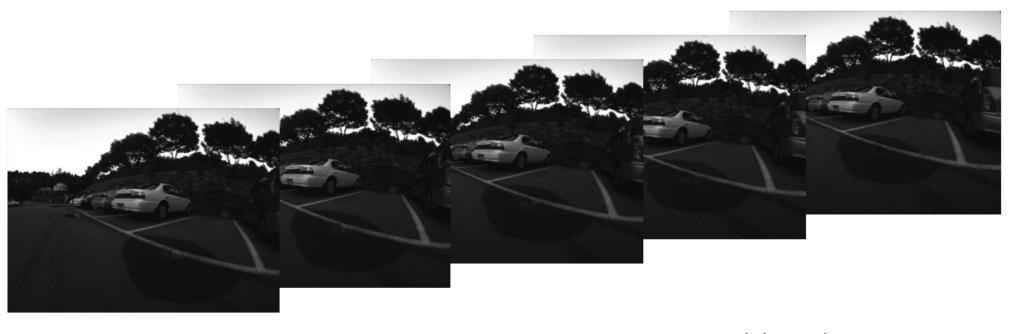
- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Problem statement

Image sequence



Slide credit: Yonsei Univ.

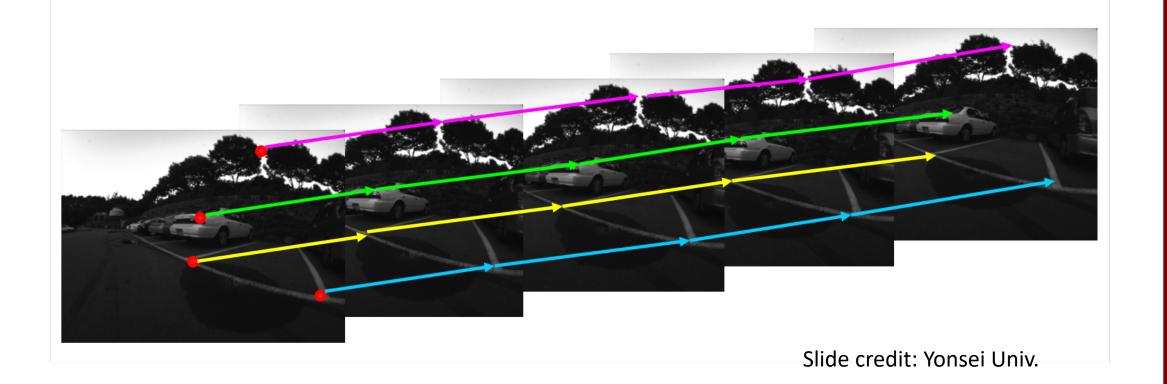
Problem statement

Feature point detection

29-Nov-2018

Problem statement

Feature point tracking



Single object tracking

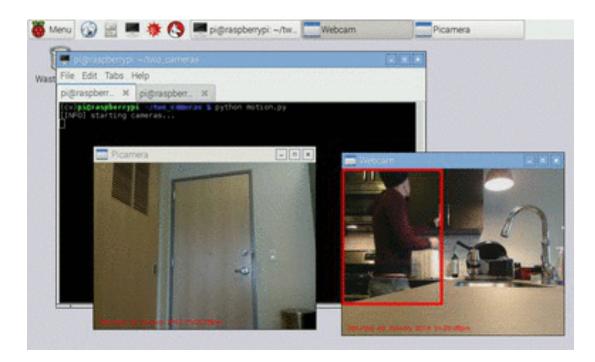
Multiple object tracking

Tracking with a fixed camera



Tracking with a moving camera

Tracking with multiple cameras



-

-

Challenges in Feature tracking

- Figure out which features can be tracked
 - Efficiently track across frames
- Some points may change appearance over time
 - e.g., due to rotation, moving into shadows, etc.
- Drift: small errors can accumulate as appearance model is updated
- Points may appear or disappear.
 - need to be able to add/delete tracked points.

What are good features to track?

- Intuitively, we want to avoid smooth regions and edges. But is there a more is principled way to define good features?
- What kinds of image regions can we detect easily and consistently? Think about what you learnt earlier in the class.

What are good features to track?

- Can measure "quality" of features from just a single image.
- Hence: tracking Harris corners (or equivalent) guarantees small error sensitivity!

Tracking

Motion estimation techniques

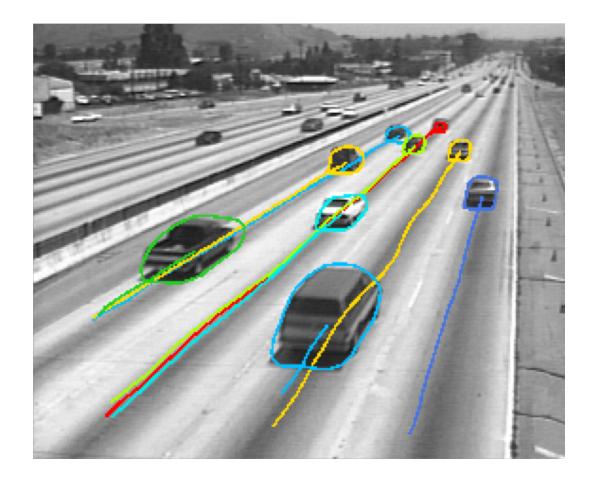
- Optical flow
 - Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

- Feature-tracking
 - Extract visual features (corners, textured areas) and "track" them over multiple frames

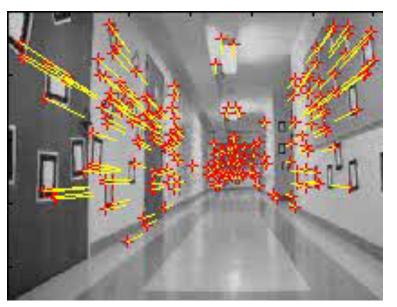
Tracking

Optical flow can help track features

Once we have the features we want to track, lucas-kanade or other optical flow algorithsm can help track those features

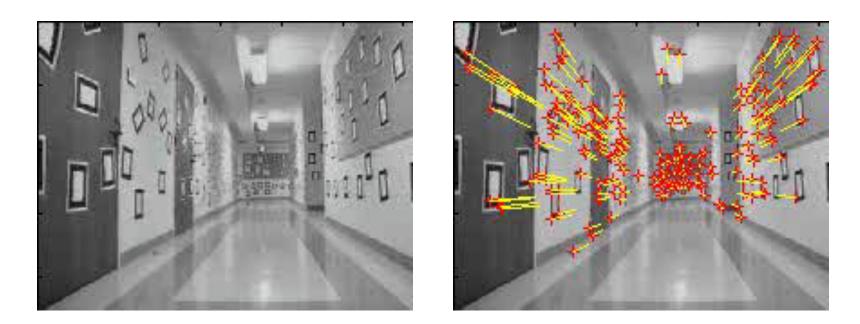


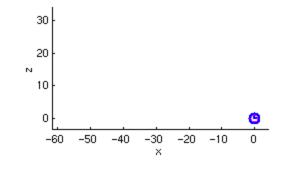
Feature-tracking



Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology

Feature-tracking





Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

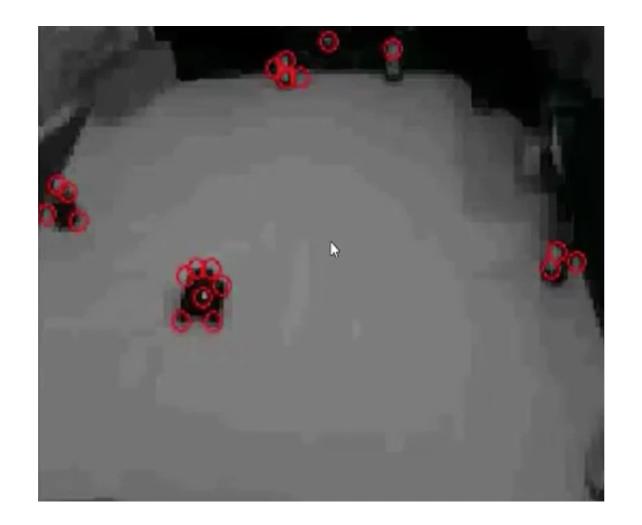
Simple KLT tracker

- 1. Find a good point to track (harris corner)
- 2. For each Harris corner compute motion (translation or affine) between consecutive frames.
- 3. Link motion vectors in successive frames to get a track for each Harris point
- 4. Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
- 5. Track new and old Harris points using steps 1-3

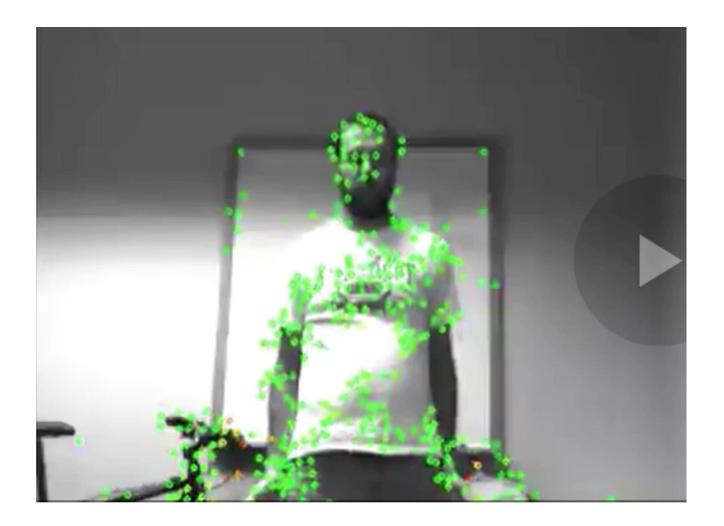
KLT tracker for fish

Video credit: Kanade

Tracking cars



Tracking movement



Video credit: Kanade

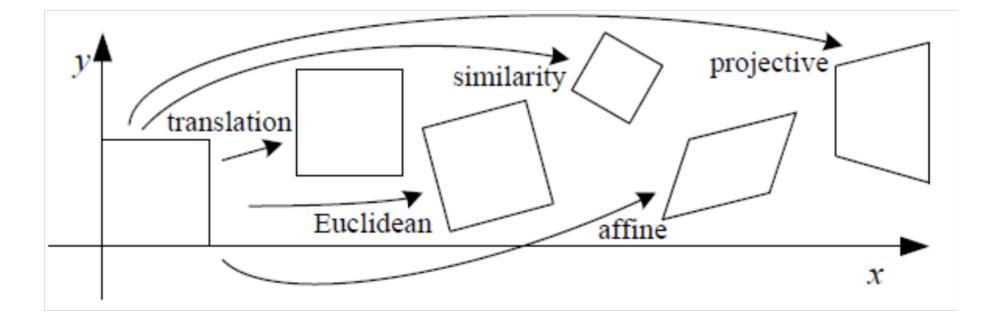
What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

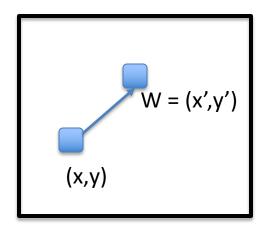
Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Types of 2D transformations



Translation



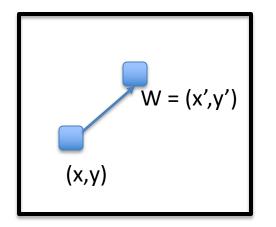
- Let the initial feature be located by (x, y).
- In the next frame, it has translated to (x', y').
- We can write the transformation as:

$$\begin{array}{rcl} x' &=& x + b_1 \\ y' &=& y + b_2 \end{array}$$

Tracking

29-Nov-2018

Translation

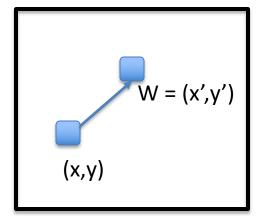


$$\begin{array}{rcl} x' &=& x + b_1 \\ y' &=& y + b_2 \end{array}$$

• We can write this as a matrix transformation using homogeneous coordinates:

•
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation

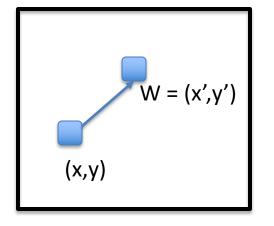


•
$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & b_1\\0 & 1 & b_2 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

Notation:

•
$$W(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \\ 1 \end{bmatrix}$$

Tracking



•
$$W(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

There are only two parameters: $p = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

The derivative of the transformation w.r.t. **p**:

$$\frac{\partial W}{\partial \boldsymbol{p}}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

This is called the Jacobian.

Similarity motion

- Rigid motion includes scaling + translation.
- We can write the transformations as:

$$\begin{array}{rcl} x' &=& ax \ + \ b_1 \\ y' &=& ay \ + \ b_2 \end{array}$$

• $W(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} a & 0 & b_1 \\ 0 & a & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ • $\mathbf{p} = \begin{bmatrix} a & b_1 & b_2 \end{bmatrix}^T$ • $\frac{\partial W}{\partial \mathbf{p}}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} x & 1 & 0 \\ y & 0 & 1 \end{bmatrix}$

Affine motion

• Affine motion includes scaling + rotation + translation.

$$\begin{aligned} x' &= a_1 x + a_2 y + b_1 \\ y' &= a_3 x + a_4 y + b_2 \end{aligned}$$

• $W(x; p) = \begin{bmatrix} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
• $p = [a_1 & a_2 & b_1 & a_3 & a_4 & b_2]^T$

•
$$\frac{\partial W}{\partial p}(x; p) = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix}$$

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Problem setting

- Given a video sequence, find all the features and track them across the video.
- First, use Harris corner detection to find features and their location *x*.
- For each feature at location $x = [x \ y]^T$:
 - Choose a descriptor create an initial template for that feature: $T(\mathbf{x})$.

KLT objective

Our aim is to find the *p* that minimizes the difference between the template *T*(*x*) and the description of the new location of *x* after undergoing the transformation.

$$\sum_{x} [I(W(\boldsymbol{x};\boldsymbol{p})) - T(x)]^2$$

- For all the features x in the image I,
 - -I(W(x; p)) is the estimate of where the features move to in the next frame after the transformation defined by W(x; p). Recall that p is our vector of parameters.
 - Sum is over an image patch around *x*.

KLT objective

• Since p may be large, minimizing this function may be difficult:

$$\sum_{x} [I(W(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x})]^2$$

- We will instead break down $oldsymbol{p} = oldsymbol{p}_0 + \, \Delta oldsymbol{p}$
 - Large + small/residual motion
 - Where p_0 is going to be fixed and we will solve for Δp , which is a small value.
 - We can initialize p_0 with our best guess of what the motion is and initialize Δp as zero.

A little bit of math: Taylor series

• Taylor series is defined as:

 $f(x + \Delta x) = f(x) + \Delta x \frac{\partial f}{\partial x} + \Delta x^2 \frac{\partial^2 f}{\partial x^2} + \dots$

- Assuming that Δx is small.
- We can apply this expansion to the KLT tracker and only use the first two terms:

Expanded KLT objective

$$\sum_{x} [I(W(x; p_0 + \Delta p)) - T(x)]^2$$

$$\approx \sum_{x} \left[I(W(x; p_0)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^2$$

It's a good thing we have already calculated what $\frac{\partial W}{\partial p}$ would look like for affine, translations and other transformations!

Expanded KLT objective

• So our aim is to find the Δp that minimizes the following:

$$\operatorname{argmin}_{\Delta p} \sum_{x} \left[I(W(x; p_0)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^2$$

- Where $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$
- Differentiate wrt Δp and setting it to zero:

$$\sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[I(W(\boldsymbol{x}; \boldsymbol{p}_{0})) + \nabla I \frac{\partial W}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right] = 0$$

Solving for Δp

• Solving for Δp in:

$$\sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[I(W(x; p_{0})) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right] = 0$$

• we get:

$$\Delta \boldsymbol{p} = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[T(x) - I(W(\boldsymbol{x}; \boldsymbol{p}_{0})) \right]$$

where $H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[\nabla I \frac{\partial W}{\partial p} \right]$

Interpreting the H matrix for translation transformations

$$H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]$$

Recall that

1. $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$ and

2. for translation motion, $\frac{\partial W}{\partial p}(x; p) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Therefore,

$$H = \sum_{x} \begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}^{T} \begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \sum_{x} \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$$
That's the Harris corner detector we learnt in class!!!

Tracking

Interpreting the H matrix for affine transformations

 $H = \sum_{\mathbf{x}} \begin{bmatrix} I_x^2 & I_x I_y & x I_x^2 & y I_x I_y & x I_x I_y & y I_x I_y \\ I_x I_y & I_y^2 & x I_x I_y & y I_y^2 & x I_y^2 & y I_y^2 \\ x I_x^2 & y I_x I_y & x^2 I_x^2 & y^2 I_x I_y & x y I_x I_y & y^2 I_x I_y \\ y I_x I_y & y I_y^2 & x y I_x I_y & y^2 I_y^2 & x y I_y^2 & y^2 I_y^2 \\ x I_x I_y & x I_y^2 & x^2 I_x I_y & x y I_y^2 & x^2 I_y^2 & x y I_y^2 \end{bmatrix}$

Can you derive this yourself similarly to how we derived the translation transformation?

Overall KLT tracker algorithm

$$\Delta \boldsymbol{p} = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[T(x) - I(W(\boldsymbol{x}; \boldsymbol{p}_{0})) \right]$$

Given the features from Harris detector:

- 1. Initialize $oldsymbol{p}_{oldsymbol{0}}$ and \Deltaoldsymbol{p} .
- 2. Compute the initial templates T(x) for each feature.
- 3. Transform the features in the image I with $W(x; p_0)$.
- 4. Measure the error: $I(W(x; p_0)) T(x)$.
- 5. Compute the image gradients $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$.
- 6. Evaluate the Jacobian $\frac{\partial W}{\partial p}$.
- 7. Compute steepest descent $\nabla I \frac{\partial W}{\partial p}$.
- 8. Compute Inverse Hessian H^{-1}
- 9. Calculate the change in parameters Δp
- 10. Update parameters $p_0 = p_0 + \Delta p$
- 11. Repeat 2 to 10 until Δp is small.

KLT over multiple frames

- Once you find a transformation for two frames, you will repeat this process for every couple of frames.
- Run Harris detector every 15-20 frames to find new features.

Challenges to consider

- Implementation issues
- Window size
 - Small window more sensitive to noise and may miss larger motions (without pyramid)
 - Large window more likely to cross an occlusion boundary (and it's slower)
 - 15x15 to 31x31 seems typical
- Weighting the window
 - Common to apply weights so that center matters more (e.g., with Gaussian)

What we learnt today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

